## Cost Estimating for Level of Effort (LOE) Activities

Matthew Schaffer Jon Sweet

#### Outline

- R&D cost growth
- Sources of errors
- A little math
- Interesting examples
- A better approach for LOE activities

### Cost Growth from Milestone II

(Baseline is estimated cost at Milestone II)

|                                         | RDTE | Procurement | Total |
|-----------------------------------------|------|-------------|-------|
| Total Cost Growth Arithmetic Average    | 44%  | 28%         | 28%   |
| Mistakes Cost Growth Arithmetic Average | 22%  | 13%         | 14%   |
| Number of Systems                       | 85   | 86          | 87    |

## RDT&E Cost Growth Attributable to Mistakes



# What's the source of estimating errors?

- General approach
  - time element
  - inter-WBS correlation
  - ground rules
- Inadequate risk analysis
  - precision versus accuracy
- Use of factors
  - enhance biases
  - increase imprecision

See the talks Thursday and Friday mornings.

#### Factors and Biases

In estimating RDT&E, generally assume the following model:

procurement-based costs 
$$f_P * T_1$$

PME task-based efforts  $C_{TB}$ 

factors on the above  $f_1 * (f_P * T_1 + C_{TB})$ 

$$f_{P} * T_{1}$$
 $C_{TB}$ 
 $f_{1} * (f_{P} * T_{1} + C_{TB})$ 

System-level LOE

Estimated system cost = 
$$(1 + f_2)*(1 + f_1)*(f_P * T_1 + C_{TB})$$

Actual system cost = 
$$(1 + \beta_2 f_2)*(1 + \beta_1 f_1)*(\beta_P f_P * \beta_T T_1 + \beta_C C_{TB})$$

## Compounding the Error

$$\beta_{\rm T} = 1.1$$
  
 $\beta_{\rm C} = \beta_{\rm P} = \beta_1 = \beta_2 = 1.05$ 

$$f_1 = 0.2$$

$$f_2 = 0.5$$

$$C_{TB}/(f_P T_1) = 0.333$$



16% growth in RDT&E

If  $\beta_{\rm C}$  = 1.2, then 20% growth.

## Growing the Variance

If X and Y are independent with means  $\mu_X$ ,  $\mu_Y$ 

$$\frac{var(XY)}{\mu_{X}^{2} \, \mu_{Y}^{2}} = \frac{var(X) \, var(Y)}{\mu_{X}^{2} \, \mu_{Y}^{2}} \, + \, \frac{var(X)}{\mu_{X}^{2}} \, + \, \frac{var(Y)}{\mu_{Y}^{2}}$$

$$\approx \frac{\text{var}(X)}{\mu_X^2} + \frac{\text{var}(Y)}{\mu_Y^2}$$

## Growing the Variance (cont'd)

More generally,

$$\frac{var(X_1X_2\cdots X_n)}{\mu_{X_1}^2\mu_{X_2}^2\cdots\mu_{X_n}^2} \approx \sum_i \frac{var(X_i)}{\mu_{X_i}^2}$$

Worst case,

$$\frac{\sigma(X_1X_2\cdots X_n)}{\mu_{X_1}\,\mu_{X_2}\cdots\mu_{X_n}} \approx \sqrt{n} \frac{\sigma(X_1)}{\mu_{X_1}}$$

## A Few Examples

Total solar irradiance sensor on NPOESS

NRE estimate = 
$$\frac{41.3}{33.1} \times \frac{.209}{.491} \times $15M$$
  
adj. for weight adj. for extent analogous system of design mod. NRE cost

Shuttle heat shield assembly

### Examples (cont'd)

• MADCAM: T1 estimating tool for Milstar communications payload electronic boxes

```
Box T1 cost = (costs of assembled boards, power supply, and enclosure) x

(1 + box IA&T cost factor) x

(1 + manuf. support cost factor) x

(platform conversion factor)
```

assembled boards cost = total board area x

$$\prod_{i}$$
 % area in i<sup>th</sup> tech. x  $\frac{\$}{\text{area}}$  for i<sup>th</sup> tech.



# LOE Estimating Example Using Equivalent Staffing Profiles

- RTIP Overview
- LOE Estimation Comparison
  - PME Percentage
  - Equivalent Staffing Profile
- Equivalent Staffing Candidates
- Data sources
- Data Normalization

# LOE Estimating Example (cont'd)

- Dealing with Schedule Variance
- Sample Program Data
- Updating the Estimate
- Using an LOE Estimate as a Management Tool

## Radar Technology Insertion Program (RTIP)

- ~ \$1B EMD Program
- Active Electronically Scanned Array (AESA)
- Significant Performance Increases in Synthetic Aperture Radar (SAR) and Moving Target Indicator (MTI)
- NATO Airborne Ground Surveillance (AGS)
- 108 Month Development Profile
- Previous Historical Data Available

#### LOE Estimation

- Estimated Based on Equivalent Staffing
- Time Phasing of Data
- Schedule Dependency
- Problems with PME Relationship
  - Subcontract Value Interdependence
  - Accounting for Process Improvement Initiatives
  - Tying Estimate to Scope of Tasks

### LOE Estimation (cont'd)

- Difficulties with Equivalent Staffing Method
  - Time/Effort Consuming
  - Data Dependent
  - Contractor or DCMC Interface
- Still Dependent on Scope and Complexity
- Must be Careful not to "Double Count" Effort

#### LOE Personnel

- "Personnel whose effort is directly affected by schedule variance"
  - Program Management
  - Project Control
  - Subcontract Management
  - System Engineering
  - Integrated Logistic Support
  - Quality Control

#### **Data Sources**

- Contractor Cost Data Report
   Tom Coonce
   OSD CCDR Program Office
   (703) 602-3169
- CPRProgram Office
- Contractor Data
   Contractor Accounting Systems

#### Data Normalization Issues

- Accounting Changes
- Definitions
- Period of Performance
- Program Scope/Complexity
- Data Requirements
- Other

### Schedule Variance

- Budgetary Changes
- Program Slips
- Effect on SE/PM v. PME
  - Forecasted
  - Actual
- Linking LOE to PME Cost Growth
  - PME Variables
  - Hardware Requirements

#### Sample Program Data



|           | Duration | PME     | SE/PM | % of PME | Ave Staff |
|-----------|----------|---------|-------|----------|-----------|
| Program 1 | 108      | 1,080.0 | 353   | 32.7%    | 50.3      |
| Program 2 | 84       | 1,175.0 | 255   | 21.7%    | 46.8      |
| Program 3 | 72       | 990.0   | 231   | 23.3%    | 49.3      |
|           | (Months) | (\$M)   | (\$M) |          | (EP)      |

#### Evolution of Your Estimate

- Updating Estimates
- Impact of Schedule Slips
  - Non-Symmetrical Impact on PME Estimating Methodologies
  - Easily Assessed
- Quantity Changes
- Use as a Management Tool

## Backup slides

## Decisions and Mistakes Cost Growth Categories

#### Decisions

- Requirements, configuration, and variant changes
- Schedule changes, and acquisition strategy changes (e.g., multiyear procurement, dual-sourcing), and management initiatives
- ILS changes, and spares and support changes
- External program factors (FMS, strikes, etc.)
- Other discretionary changes

#### Mistakes

- Production assumption and estimation changes
- Engineering, test, and development changes
- ILS changes, and spares and support changes not attributable to post-milestone II discretionary decisions
- Schedule slips attributable to technical problems
- Other changes not attributable to discretionary changes

## Distribution of Mistakes RDT&E Cost Growth

